# PAM1014 Introduction to Radiation Physics

"Basic Atomic Theory"

## Objectives

- Introduce
  - Atoms and Molecules
  - Isotopes
  - The periodic Table
  - Electronic Energy Levels
  - Atomic excitation & de-excitation
  - Ionisation
  - Molecules



| Constituent | Symbol | Charge | Mass                       |
|-------------|--------|--------|----------------------------|
| electron    | e      | -1     | 9.1 x 10 <sup>-31</sup> kg |
| proton      | р      | +1     | 1836 x m <sub>e</sub>      |
| neutron     | n      | 0      | 1839 x m <sub>e</sub>      |





#### Elements

• A substance that cannot be divided or changed into other chemical substances by any ordinary chemical technique.



- The smallest unit of this kind of chemical substances is an atom.
- An element is a class of substances that contain the same number of protons in all its atoms.
- They all have names and abbreviations

#### Isotopes

- All atoms of an element have the same number of protons
- The number of neutrons can vary.
- Atoms with the same number of protons and differing numbers of neutrons are called ISOTOPES.
- Isotopes of an element
  - Have the same Atomic Number
  - Have different Atomic Mass Number



#### Isotopes

- Some Isotopes are unstable.
  - The nucleus of unstable atoms do not hold together well.
  - Radioactive decay is the process whereby the nucleus of unstable isotopes release fast moving particles and energy.

## Periodic Table

- Elements have properties that repeat themselves with variation of N° of electrons (Atomic Number)
- Elements can be arranged periodically to show this repeated variation.







#### electron Quantized Orbits n=3 proto n=2 • The energy of the orbiting B electrons as depicted in Bohr model is restricted to certain discrete values. • The energy is therefore "quantized" nucleus - Only certain orbits with certain radii are possible - Orbits in between discrete value not possible

#### Excitation & De-excitation of Atoms

The Bohr Model

• Nuclear radius ~100.000

• More accurate theory of

"Quantum Mechanics"

the atom requires

times smaller than atomic

• Not to scale!

radius.

• If atoms absorb energy, electrons are excited into higher energy levels

neútron

• Atoms release this energy if electrons drop back to lower levels



# Excitation & De-excitation of Atoms

• Energy of the emitted or absorbed light (photon) is exactly equal to the energy difference between the two orbits.

#### Ionisation

- Much of normal matter is "electrically neutral"
  - $N^{\rm o}$  of electrons =  $N^{\rm o}$  of protons
- In presence of energy sources, atoms and molecules can gain OR lose electrons

   therefore gain a net electrical charge.

#### Ionisation

- Definition:
  Gain or Loss of electrons
- Loss of an electron
   Atom becomes positively charged ion
   e.g. H\*, He\*, Fe<sup>2+</sup>
- Gain of an electron
   Atom becomes negatively charged ion
   F<sup>-</sup>, Cl<sup>-</sup>, S<sup>2-</sup>

## Combination of Atoms

• Atoms of various elements may combine to form structures called molecules

#### Example

 An atom of sodium (Na) can combine with an atom of chlorine (Cl) to form sodium chloride (NaCl)

#### Na + Cl = NaCl

- Smallest particle of an element is an atom
- Smallest particle of a compound is a molecule

#### Combination of Atoms

- Over 100 elements are known
   Most are rare
- ~95% of the Earth & it's atmosphere consist of only a dozen elements

## Combination of Atoms

- Nitrogen, Oxygen, Carbon and Hydrogen compose over 95% of the human body
- 80% of the human body is water



# Summary

- Atoms and Molecules
- Isotopes

- The periodic Table
  Electronic Energy Levels
  Atomic excitation & de-excitation
- Ionisation
- Molecules